Wyeth Perspective on Inhibitor Development

Jay M. Feingold, M.D., Ph.D. Senior Director, Global Medical Affairs

November 21, 2003

Inhibitors in Hemophilia A

- Inhibitors are one of the most important safety concerns for all hemophilia patients
 - rFVIII and pdFVIII have similar incidence of inhibitors in clinical trials
 - rFVIII and pdFVIII have low incidence of high-titer inhibitors in PTPs
 - Literature and registries support these findings
- Establish uniform standards
- Global surveillance program should be implemented for all products

ReFacto® Antihemophilic Factor (recombinant)

- B-domain deleted recombinant factor VIII (BDDrFVIII)
- Produced through a genetically engineered Chinese hamster ovary cell line (CHO)
- Designed to correspond to the smallest of the multiple active forms of FVIII found in plasma-derived concentrates
- Complexity and heterogeneity have been greatly reduced through the elimination of the B-domain, which is not essential for hemostatic function

Full-Length Factor VIII and ReFacto

ReFacto Comparable to Full-Length FVIII

In vitro functional assessment

- vWF binding
- Thrombin activation
- Inactivation by activated Protein C
- ▶ FXa generation co-factor activity

Detailed structural analysis

- Primary protein structure
- Carbohydrate structure
- Other post-translational modifications

ReFacto Comparable to Full-Length FVIII

- Pharmacodynamic studies in canine model of Hemophilia A demonstrate comparability
 - Secondary cuticle bleeding times were corrected
 - Prolonged whole blood clotting times were corrected
 - Hemostatic correction occurred at the same dose and schedule as fulllength FVIII
- Single and repeated dose toxicity studies demonstrate comparability
 - In rat and monkey studies, the toxicity profile is similar to that observed for plasma-derived factor VIII

Extensive Clinical Development Program

- PK comparability with pdFVIII
- Safety / efficacy for bleeding control and prevention
 - **▶** PTPs
 - **PUPs**
 - Surgery
 - Routine prophylaxis
 - On-demand
- Clinical trials demonstrate ReFacto to be safe and effective

ReFacto Bioequivalent to FL-pdFVIII

PK Parameters	ReFacto	pdAHF
Elimination half-life (hrs)*	14.5 ± 5.3	13.7 ± 3.4
FVIII activity increase		
IU/dL per IU/kg*†	2.4 ± 0.4	2.3 ± 0.3
In vivo recovery (%)*	118 ± 17	111 ± 14

^{*} Mean <u>+</u> S.D.

†FVIII activity determined by chromogenic assay

ReFacto Study Design: PUP & PTP Trials

	PUP	PTP	
Study Objective	Demonstrate long-term safety & efficacy of prophylaxis / on-demand		
Design	Open-label, non-comparative		
Treatment Plan	Prophylaxis, on-demand, follow-up to 6 years		
	Severe Hemophilia A (< 2% FVIII:C)	• Severe Hemophilia A (< 2% FVIII:C), age ³ 7 years	
Key Eligibility	 No history of transfusions with blood products 	 >1 year of prophylaxis treatment with FVIII or at least 30 ED / year 	
		• Absence of past or present inhibitors (3 0.6 BU)	
Demo-	• 101 patients	• 113 patients	
graphics	Median age: 8 mos (range 0-52)	Median age: 26 years (range 8-73)	

ReFacto Efficacy

- ReFacto efficacy was demonstrated in PUPs and PTPs
- Duration of treatment

	<u>Years on Study</u>	Percent of Patients
PTPs	4 years 5 years	76% 64%
	6 years	39%
PUPs	4 years 5 years 6 years	54% 29% 5%

- Median ED
 - ▶ **PTPs** 313 ED
 - ▶ **PUPs** 197 ED

ReFacto On-Demand Efficacy

<u>PUP</u>

PTP

Episodes resolved with 1-2 infusions:

85%*

88%

Excellent/Good Ratings:

92%*

92%

^{*} Bleeding episodes in PUPs who were inhibitor-free or until inhibitor detected

ReFacto Prophylaxis Efficacy

Prophylactic dosing reduces the rate of bleeding episodes

		No. bleeding episodes / year	
		On-Demand Periods	Prophylaxis Periods
PUPs			
	No. patients	45	45
	Mean ± SD	11.4 ± 6.0	6.3 ± 5.2
	Median (<i>range</i>)	10.0 (<i>2 - 28</i>)	5.0 (<i>0</i> – <i>22</i>)
PTPs			
	No. patients	78	85*
	Mean ± SD	$\textbf{24.5} \pm \textbf{24.6}$	$\textbf{10.3} \pm \textbf{9.8}$
	Median (<i>range</i>)	20 (<i>0</i> – 135)	7 (0 – 42)

^{*} Seven (7) patients received prophylactic treatment for their entire time on study.

Factor VIII Inhibitor Testing During Clinical Trials

Extensive inhibitor monitoring

- Classic Bethesda Inhibitor Assay (BIA)
 - Method precision: within 11%
 - Limit of Quantitation: 0.6 BU/ml
 - "No inhibitor" < 0.6 BU/ml</p>
- Three (3) independent BIAs performed centrally
 - Normal human plasma test base
 - ReFacto test base
 - Nijmegen inhibitor assay

FVIII Inhibitors: ReFacto Clinical Trial Experience Similar to Full-Length FVIII for PUPs and PTPs

PUPs

- 32% (32 out of 101) of patients developed inhibitors
 - ▶ 16 were low-titer (<5 BU)
 - ▶ 16 were high-titer (>5 BU)
- Consistent with other clinical trials with other rFVIII products
- Number of exposure days prior to inhibitor development
 - Median = 12 EDs (range 3 to 49)
- Inhibitor resolved (0 BU) in 25 of 32 patients (78%)
 - 20 of 25 patients who received ITT (Immune Tolerance Therapy)
 - 5 of 7 patients who did not receive ITT

PTPs

- 1 of 113 (0.9%) patients developed an inhibitor
 - Low-titer inhibitor of 1.2 BU at 98 ED
 - After 18 months, titer increased to 13 BU

Similar Inhibitor Rates in PTP Clinical Trials

- Schwartz et al., NEJM 1990 (1st generation FL rFVIII)
 - ► High-titer *de novo* inhibitors developed in 2 of 86 PTP patients (2.3%; Cl=0.28- 8.15)*
 - In one of these patients, Western blot analysis of baseline samples detected antibody to factor VIII
- White et al., Thromb Haemost 1997 (1st generation FL rFVIII)
 - ▶ Inhibitors developed in 2 of 69 PTP patients (2.9%; CI=0.35-10.08)*
 - 1 patient with a remote history of a previous low-titer inhibitor
 - 1 patient with a low-titer inhibitor at baseline that became a high-titer inhibitor
- Abshire et al., Thromb Haemost 2000 (2nd generation FL rFVIII)
 - Inhibitor developed in 1 of 71 PTP patients (1.4%; CI=0.04-7.60)*
 - This patient had a low-titer inhibitor (0.39 BU) prior to study entry, considered anamnestic
- Courter and Bedrosian, Seminars in Hematology 2001 (2nd generation BDD rFVIII)
 - ▶ 1 in 113 PTP patients (0.9%; Cl=0.02- 4.83) developed an inhibitor

^{*} Based on Wyeth analysis of article

Similar Inhibitor Rates in PTP Post-Marketing Observational Studies

- McMillan et al., Blood 1988 (pdFVIII)
 - 3.2% of patients developed inhibitors (n=919)
 - **▶** 26 with ≥25 EDs
 - ▶ 14 PTP (1.6%) with high-titer inhibitors (> 5 BU)
- Giles et al., Transf Sci 1998 (large Canadian experience in PTPs)
 - > PTP patients switching from plasma-derived factor VIII to recombinant factor FVIII
 - ▶ 1.9% of patients developed inhibitors at 1 year (n=478)
 - ▶ 3.0% of patients developed inhibitors at 2 years (n=339)
- NHF (MASAC) 2003 (survey on high-titer inhibitors in PTPs)
 - ▶ 45 centers responded (approximately 3500 patients)
 - ▶ 12 PTPs (0.35%) with >50 EDs developed high-titer inhibitors in last 3 years
 - 10 recombinant; 2 plasma derived product
 - ▶ 6 of 12 inhibitor patients had more than 250 EDs

Conclusions from Literature Review

- Reported range for inhibitor development in PTPs: 0.9-3.2%
- Reported range for high titer inhibitors: 0-2.3%
- Broad and overlapping confidence intervals exists
- Definitions for inhibitors vary among reports
 - ▶ High vs. low-titer
 - De novo vs. anamnestic
- Need for a consistent standard for reporting inhibitors

Wyeth Post-Marketing Inhibitor Surveillance

- Wyeth reports <u>any</u> spontaneous event of inhibitor development with or without supportive clinical or laboratory data
 - Extensive follow-up data collection
 - Inhibitor specific questionnaire sent to all reporters
 - Follow-up telephone calls
- Wyeth definitions for post-marketing inhibitor reports
 - No central laboratory testing performed
 - ▶ Positive titer: > 0.6 BU
 - ▶ High-titer: ≥ 5.0 BU
 - ▶ Positive history of inhibitor: any previous titer ≥ 0.6 BU
 - De novo: no prior history of inhibitor ≥ 0.6 BU

Post-Marketing Experience with ReFacto*

- Estimated 5800 patients treated worldwide
 - ▶ 1450 PUPs
 - ▶ 4350 PTPs
- 83 reports of inhibitors
 - > 31 PUPs
 - 24 classified as:
 - 12 unknown ED or < 50 ED to all FVIII products
 - 7 history of inhibitor prior to ReFacto therapy
 - 4 inadequate medical history information
 - 1 no titer obtained
- Therefore, 28 de novo inhibitors in PTPs with >50 ED to all FVIII products
 - ▶ 20 low-titer (0.5%)
 - ▶ 8 high-titer (0.2%)

^{*} Through April 2003

Initiatives in PTP Inhibitor Monitoring

- Data in PTPs reporting inhibitors has led to a broad discussion
 - Canadian prospective inhibitor surveillance
 - 3% incidence at two years
 - Review of UK inhibitor database
 - No product specificity
 - MASAC survey
 - High-titer inhibitors seen with pdFVIII and rFVIII
 - ▶ ISTH interest in global surveillance program

Conclusions/Recommendations

- Clinical trials, literature, and registries support:
 - rFVIII and pdFVIII products have similar incidence of inhibitors
 - rFVIII and pdFVIII products have low incidence of high-titer inhibitors in PTPs
- Global prospective surveillance needed to assess incidence of inhibitor development
 - Defined period of patient observation
 - Standardized data collection techniques and definitions
 - Gathering of complete patient information including serial inhibitor testing, genotyping and other relevant data
- Standardized spontaneous data collection leading to data-driven labeling